Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
mSystems ; 6(5) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2318454

ABSTRACT

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease. IMPORTANCE COVID-19 involves a number of organ systems and can present with a wide range of symptoms. From how the virus infects cells to how it spreads between people, the available research suggests that these patterns are very similar to those seen in the closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related CoV (MERS-CoV). Understanding the pathogenesis of the SARS-CoV-2 virus also contextualizes how the different biological systems affected by COVID-19 connect. Exploring the structure, phylogeny, and pathogenesis of the virus therefore helps to guide interpretation of the broader impacts of the virus on the human body and on human populations. For this reason, an in-depth exploration of viral mechanisms is critical to a robust understanding of SARS-CoV-2 and, potentially, future emergent human CoVs (HCoVs).Copyright © 2021 Rando et al.

2.
Journal of Laboratory and Precision Medicine ; 7 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2269216

ABSTRACT

Background: This article is aimed to provide an updated landscape of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic mutations emerged since its first identification and sequencing. Method(s): We downloaded and analyzed all mutations within the SARS-CoV-2 RNA genome submitted up to February 8, 2022 to the website of the National Center for Biotechnology Information (NCBI), which contains all variants in Sequence Read Archive (SRA) records compared to the prototype SARS-CoV-2 reference sequence NC_045512.2. Result(s): Our search identified 26,005 different mutations. The largest number of mutations was located within the gene encoding for the Nsp3 protein (20.7%), followed by the gene encoding for the spike protein (14.6%). Overall, 17,948/26,005 (69.0%) of these mutations interested single nucleotide positions, thus spanning over ~62% of the entire SARS-CoV-2 genome. Of all mutations, 61.5% were non-synonymous, whilst 17.4% of those in the gene encoding for the spike protein involved the sequence of the receptor binding domain, 59.2% of which were non-synonymous. When the number of mutations was expressed as ratio to the gene size, the highest ratio was found in the sequence encoding for ORF7a (ratio, 2.25), followed by ORF7b (ratio, 1.85), ORF8 (ratio, 1.60) and ORF3a (ratio, 1.48). The gene encoding for RNA-dependent RNA polymerase accounted for only 0.1% of all mutations, with considerably low ratio with the gene size (i.e., ratio, 0.01). Conclusion(s): The results of our analysis demonstrate that SARS-CoV-2 has enormously mutated since its first sequence has been identified over 2 years ago.Copyright © 2022 AME Publishing Company. All rights reserved.

3.
Brief Funct Genomics ; 2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2235873

ABSTRACT

Long-range ribonucleic acid (RNA)-RNA interactions (RRI) are prevalent in positive-strand RNA viruses, including Beta-coronaviruses, and these take part in regulatory roles, including the regulation of sub-genomic RNA production rates. Crosslinking of interacting RNAs and short read-based deep sequencing of resulting RNA-RNA hybrids have shown that these long-range structures exist in severe acute respiratory syndrome coronavirus (SARS-CoV)-2 on both genomic and sub-genomic levels and in dynamic topologies. Furthermore, co-evolution of coronaviruses with their hosts is navigated by genetic variations made possible by its large genome, high recombination frequency and a high mutation rate. SARS-CoV-2's mutations are known to occur spontaneously during replication, and thousands of aggregate mutations have been reported since the emergence of the virus. Although many long-range RRIs have been experimentally identified using high-throughput methods for the wild-type SARS-CoV-2 strain, evolutionary trajectory of these RRIs across variants, impact of mutations on RRIs and interaction of SARS-CoV-2 RNAs with the host have been largely open questions in the field. In this review, we summarize recent computational tools and experimental methods that have been enabling the mapping of RRIs in viral genomes, with a specific focus on SARS-CoV-2. We also present available informatics resources to navigate the RRI maps and shed light on the impact of mutations on the RRI space in viral genomes. Investigating the evolution of long-range RNA interactions and that of virus-host interactions can contribute to the understanding of new and emerging variants as well as aid in developing improved RNA therapeutics critical for combating future outbreaks.

4.
Viruses ; 15(2)2023 01 31.
Article in English | MEDLINE | ID: covidwho-2225682

ABSTRACT

We investigated the evolution of SARS-CoV-2 spread in Calabria, Southern Italy, in 2022. A total of 272 RNA isolates from nasopharyngeal swabs of individuals infected with SARS-CoV-2 were sequenced by whole genome sequencing (N = 172) and/or Sanger sequencing (N = 100). Analysis of diffusion of Omicron variants in Calabria revealed the prevalence of 10 different sub-lineages (recombinant BA.1/BA.2, BA.1, BA.1.1, BA.2, BA.2.9, BA.2.10, BA.2.12.1, BA.4, BA.5, BE.1). We observed that Omicron spread in Calabria presented a similar trend as in Italy, with some notable exceptions: BA.1 disappeared in April in Calabria but not in the rest of Italy; recombinant BA.1/BA.2 showed higher frequency in Calabria (13%) than in the rest of Italy (0.02%); BA.2.9, BA.4 and BA.5 emerged in Calabria later than in other Italian regions. In addition, Calabria Omicron presented 16 non-canonical mutations in the S protein and 151 non-canonical mutations in non-structural proteins. Most non-canonical mutations in the S protein occurred mainly in BA.5 whereas non-canonical mutations in non-structural or accessory proteins (ORF1ab, ORF3a, ORF8 and N) were identified in BA.2 and BA.5 sub-lineages. In conclusion, the data reported here underscore the importance of monitoring the entire SARS-CoV-2 genome.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Evolution, Molecular , Genome, Viral , SARS-CoV-2/genetics , Italy/epidemiology
5.
Elife ; 112022 09 13.
Article in English | MEDLINE | ID: covidwho-2217486

ABSTRACT

Background: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods: We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48 hr) and 4 weeks of 'longer-turnaround' (5-10 days) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital-onset COVID-19 infections (HOCIs; detected ≥48 hr from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on the incidence of probable/definite hospital-acquired infections (HAIs), was evaluated. Results: A total of 2170 HOCI cases were recorded from October 2020 to April 2021, corresponding to a period of extreme strain on the health service, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (incidence rate ratio 1.60, 95% CI 0.85-3.01; p=0.14) or rapid (0.85, 0.48-1.50; p=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8 and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2 and 11.6% of cases where the report was returned. In a 'per-protocol' sensitivity analysis, there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Capacity to respond effectively to insights from sequencing was breached in most sites by the volume of cases and limited resources. Conclusions: While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days. Funding: COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) (grant code: MC_PC_19027), and Genome Research Limited, operating as the Wellcome Sanger Institute. Clinical trial number: NCT04405934.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Prospective Studies , Infection Control/methods , Cross Infection/epidemiology , Cross Infection/prevention & control , Hospitals
6.
Theranostics ; 12(10): 4779-4790, 2022.
Article in English | MEDLINE | ID: covidwho-2203050

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuing to spread globally, contributing to the persistence of the COVID-19 pandemic. Increasing resources have been focused on developing vaccines and therapeutics that target the Spike glycoprotein of SARS-CoV-2. Recent advances in microfluidics have the potential to recapitulate viral infection in the organ-specific platforms, known as organ-on-a-chip (OoC), in which binding of SARS-CoV-2 Spike protein to the angiotensin-converting enzyme 2 (ACE2) of the host cells occurs. As the COVID-19 pandemic lingers, there remains an unmet need to screen emerging mutations, to predict viral transmissibility and pathogenicity, and to assess the strength of neutralizing antibodies following vaccination or reinfection. Conventional detection of SARS-CoV-2 variants relies on two-dimensional (2-D) cell culture methods, whereas simulating the micro-environment requires three-dimensional (3-D) systems. To this end, analyzing SARS-CoV-2-mediated pathogenicity via microfluidic platforms minimizes the experimental cost, duration, and optimization needed for animal studies, and obviates the ethical concerns associated with the use of primates. In this context, this review highlights the state-of-the-art strategy to engineer the nano-liposomes that can be conjugated with SARS-CoV-2 Spike mutations or genomic sequences in the microfluidic platforms; thereby, allowing for screening the rising SARS-CoV-2 variants and predicting COVID-19-associated coagulation. Furthermore, introducing viral genomics to the patient-specific blood accelerates the discovery of therapeutic targets in the face of evolving viral variants, including B1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), c.37 (Lambda), and B.1.1.529 (Omicron). Thus, engineering nano-liposomes to encapsulate SARS-CoV-2 viral genomic sequences enables rapid detection of SARS-CoV-2 variants in the long COVID-19 era.


Subject(s)
COVID-19 , Coronavirus Infections , Pneumonia, Viral , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/complications , COVID-19/diagnosis , Coronavirus Infections/prevention & control , Genomics , Humans , Liposomes , Microfluidics , Mutation , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Post-Acute COVID-19 Syndrome
7.
Biology (Basel) ; 11(12)2022 Dec 08.
Article in English | MEDLINE | ID: covidwho-2154883

ABSTRACT

Through the COVID-19 pandemic, SARS-CoV-2 has gained and lost multiple mutations in novel or unexpected combinations. Predicting how complex mutations affect COVID-19 disease severity is critical in planning public health responses as the virus continues to evolve. This paper presents a novel computational framework to complement conventional lineage classification and applies it to predict the severe disease potential of viral genetic variation. The transformer-based neural network model architecture has additional layers that provide sample embeddings and sequence-wide attention for interpretation and visualization. First, training a model to predict SARS-CoV-2 taxonomy validates the architecture's interpretability. Second, an interpretable predictive model of disease severity is trained on spike protein sequence and patient metadata from GISAID. Confounding effects of changing patient demographics, increasing vaccination rates, and improving treatment over time are addressed by including demographics and case date as independent input to the neural network model. The resulting model can be interpreted to identify potentially significant virus mutations and proves to be a robust predctive tool. Although trained on sequence data obtained entirely before the availability of empirical data for Omicron, the model can predict the Omicron's reduced risk of severe disease, in accord with epidemiological and experimental data.

8.
Front Med (Lausanne) ; 9: 989913, 2022.
Article in English | MEDLINE | ID: covidwho-2121073

ABSTRACT

Prompt and accurate pathogen identification, by diagnostics and sequencing, is an effective tool for tracking and potentially curbing pathogen spread. Targeted detection and amplification of viral genomes depends on annealing complementary oligonucleotides to genomic DNA or cDNA. However, genomic mutations that occur during viral evolution may perturb annealing, which can result in incomplete sequence coverage of the genome and/or false negative diagnostic test results. Herein, we demonstrate how to assess, test, and optimize sequencing and detection methodologies to attenuate the negative impact of mutations on genome targeting efficiency. This evaluation was conducted using in vitro-transcribed (IVT) RNA as well as RNA extracted from clinical SARS-CoV-2 variant samples, including the heavily mutated Omicron variant. Using SARS-CoV-2 as a current example, these results demonstrate how to maintain reliable targeted pathogen sequencing and how to evaluate detection methodologies as new variants emerge.

9.
Comput Biol Med ; 149: 105969, 2022 10.
Article in English | MEDLINE | ID: covidwho-1982867

ABSTRACT

Epidemiological studies show that COVID-19 variants-of-concern, like Delta and Omicron, pose different risks for severe disease, but they typically lack sequence-level information for the virus. Studies which do obtain viral genome sequences are generally limited in time, location, and population scope. Retrospective meta-analyses require time-consuming data extraction from heterogeneous formats and are limited to publicly available reports. Fortuitously, a subset of GISAID, the global SARS-CoV-2 sequence repository, includes "patient status" metadata that can indicate whether a sequence record is associated with mild or severe disease. While GISAID lacks data on comorbidities relevant to severity, such as obesity and chronic disease, it does include metadata for age and sex to use as additional attributes in modeling. With these caveats, previous efforts have demonstrated that genotype-patient status models can be fit to GISAID data, particularly when country-of-origin is used as an additional feature. But are these models robust and biologically meaningful? This paper shows that, in fact, temporal and geographic biases in sequences submitted to GISAID, as well as the evolving pandemic response, particularly reduction in severe disease due to vaccination, create complex issues for model development and interpretation. This paper poses a potential solution: efficient mixed effects machine learning using GPBoost, treating country as a random effect group. Training and validation using temporally split GISAID data and emerging Omicron variants demonstrates that GPBoost models are more predictive of the impact of spike protein mutations on patient outcomes than fixed effect XGBoost, LightGBM, random forests, and elastic net logistic regression models.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/epidemiology , Humans , Machine Learning , Mutation , Phylogeny , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics
10.
Chinese Journal of Microbiology and Immunology (China) ; 41(11):821-828, 2021.
Article in Chinese | EMBASE | ID: covidwho-1957485

ABSTRACT

Human coronavirus OC43 (HCoV-OC43) and severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) belong to the β-coronavirus genus. Since the discovery in 1967, HCoV-OC43 has been continuously circulating in human population and has become one of the common seasonal respiratory viruses. SARS-CoV-2, which has a higher morbidity and fatality rate, appeared at the end of 2019, followed by the emergence of a variety of variants, and the transmission and infection capacity of SARS-CoV-2 has been enhanced. HCoV-OC43 may be similar to SARS-CoV-2 in terms of genomic structure and function, species evolution, epidemic characteristics and clinical manifestations. In this review, the epidemiology, genomics, phylogenetic evolution and other aspects of HCoV-OC43 and SARS-CoV-2 were analyzed. Such an analysis would be helpful to understand the association and differences between the two viruses, and provide reference for understanding the potential threats of HCoV-OC43.

11.
Pathogens ; 11(7)2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1928620

ABSTRACT

In Poland, the first case of SARS-CoV-2 infection was confirmed in March 2020. Since then, many circulating virus lineages fueled rapid pandemic waves which inflicted a severe burden on the Polish healthcare system. Some of these lineages were associated with increased transmissibility and immune escape. Mutations in the viral spike protein, which is responsible for host cell recognition and serves as the primary target for neutralizing antibodies, are of particular importance. We investigated the molecular epidemiology of the SARS-CoV-2 clades circulating in Southern Poland from February 2021 to August 2021. The 921 whole-genome sequences were used for variant identification, spike mutation, and phylogenetic analyses. The Pango B.1.1.7 was the dominant variant (n = 730, 89.68%) from March 2021 to July 2021. In July 2021, the B.1.1.7 was displaced by the B.1.617.2 lineage with 66.66% in July 2021 and 92.3% in August 2021 frequencies, respectively. Moreover, our results were compared with the sequencing available on the GISAID platform for other regions of Poland, the Czech Republic, and Slovakia. The analysis showed that the dominant variant in the analyzed period was B.1.1.7 in all countries and Southern Poland (Silesia). Interestingly, B.1.1.7 was replaced by B.1.617.2 earlier in Southern Poland than in the rest of the country. Moreover, in the Czech Republic and Slovakia, AY lineages were predominant at that time, contrary to the Silesia region.

12.
Virus Evol ; 8(1): veac026, 2022.
Article in English | MEDLINE | ID: covidwho-1774422

ABSTRACT

Many large national and transnational studies have been dedicated to the analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genome, most of which focused on missense and nonsense mutations. However, approximately 30 per cent of the SARS-CoV-2 variants are synonymous, therefore changing the target codon without affecting the corresponding protein sequence. By performing a large-scale analysis of sequencing data generated from almost 400,000 SARS-CoV-2 samples, we show that silent mutations increasing the similarity of viral codons to the human ones tend to fixate in the viral genome overtime. This indicates that SARS-CoV-2 codon usage is adapting to the human host, likely improving its effectiveness in using the human aminoacyl-tRNA set through the accumulation of deceitfully neutral silent mutations. One-Sentence Summary. Synonymous SARS-CoV-2 mutations related to the activity of different mutational processes may positively impact viral evolution by increasing its adaptation to the human codon usage.

13.
mSystems ; 7(2): e0003522, 2022 Apr 26.
Article in English | MEDLINE | ID: covidwho-1752766

ABSTRACT

Next-generation sequencing has been essential to the global response to the COVID-19 pandemic. As of January 2022, nearly 7 million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences are available to researchers in public databases. Sequence databases are an abundant resource from which to extract biologically relevant and clinically actionable information. As the pandemic has gone on, SARS-CoV-2 has rapidly evolved, involving complex genomic changes that challenge current approaches to classifying SARS-CoV-2 variants. Deep sequence learning could be a potentially powerful way to build complex sequence-to-phenotype models. Unfortunately, while they can be predictive, deep learning typically produces "black box" models that cannot directly provide biological and clinical insight. Researchers should therefore consider implementing emerging methods for visualizing and interpreting deep sequence models. Finally, researchers should address important data limitations, including (i) global sequencing disparities, (ii) insufficient sequence metadata, and (iii) screening artifacts due to poor sequence quality control.

14.
Viruses ; 12(5)2020 05 10.
Article in English | MEDLINE | ID: covidwho-1726011

ABSTRACT

The COVID-19 pandemic is due to infection caused by the novel SARS-CoV-2 virus that impacts the lower respiratory tract. The spectrum of symptoms ranges from asymptomatic infections to mild respiratory symptoms to the lethal form of COVID-19 which is associated with severe pneumonia, acute respiratory distress, and fatality. To address this global crisis, up-to-date information on viral genomics and transcriptomics is crucial for understanding the origins and global dispersion of the virus, providing insights into viral pathogenicity, transmission, and epidemiology, and enabling strategies for therapeutic interventions, drug discovery, and vaccine development. Therefore, this review provides a comprehensive overview of COVID-19 epidemiology, genomic etiology, findings from recent transcriptomic map analysis, viral-human protein interactions, molecular diagnostics, and the current status of vaccine and novel therapeutic intervention development. Moreover, we provide an extensive list of resources that will help the scientific community access numerous types of databases related to SARS-CoV-2 OMICs and approaches to therapeutics related to COVID-19 treatment.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Genomics , Humans , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , SARS-CoV-2 , Viral Vaccines/immunology , COVID-19 Drug Treatment
15.
Viruses ; 14(2)2022 02 15.
Article in English | MEDLINE | ID: covidwho-1687058

ABSTRACT

In February 2020, the municipality of Vo', a small town near Padua (Italy) was quarantined due to the first coronavirus disease 19 (COVID-19)-related death detected in Italy. To investigate the viral prevalence and clinical features, the entire population was swab tested in two sequential surveys. Here we report the analysis of 87 viral genomes, which revealed that the unique ancestor haplotype introduced in Vo' belongs to lineage B, carrying the mutations G11083T and G26144T. The viral sequences allowed us to investigate the viral evolution while being transmitted within and across households and the effectiveness of the non-pharmaceutical interventions implemented in Vo'. We report, for the first time, evidence that novel viral haplotypes can naturally arise intra-host within an interval as short as two weeks, in approximately 30% of the infected individuals, regardless of symptom severity or immune system deficiencies. Moreover, both phylogenetic and minimum spanning network analyses converge on the hypothesis that the viral sequences evolved from a unique common ancestor haplotype that was carried by an index case. The lockdown extinguished both the viral spread and the emergence of new variants.


Subject(s)
Family Characteristics , Genome, Viral , Haplotypes , Host Microbial Interactions/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Communicable Disease Control/methods , Evolution, Molecular , Humans , Italy/epidemiology , Mutation , Phylogeny , SARS-CoV-2/classification
16.
Int J Infect Dis ; 114: 51-54, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487755

ABSTRACT

Mutations in emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages can interfere with laboratory methods used to generate viral genome sequences for public health surveillance. We identified 20 mutations that are widespread in variant of concern lineages and affect widely used sequencing protocols by the ARTIC network and Freed et al. Three of these mutations disrupted sequencing of P.1 lineage specimens during a recent outbreak in British Columbia, Canada. We provide laboratory validation of protocol modifications that restored sequencing performance. The study findings indicate that genomic sequencing protocols require immediate updating to address emerging mutations. This work also suggests that routine monitoring and protocol updates will be necessary as SARS-CoV-2 continues to evolve. The bioinformatic and laboratory approaches used here provide guidance for this kind of assay maintenance.


Subject(s)
COVID-19 , SARS-CoV-2 , British Columbia , Genome, Viral/genetics , Genomics , Humans , Mutation
17.
Viruses ; 13(9)2021 09 18.
Article in English | MEDLINE | ID: covidwho-1430978

ABSTRACT

Genomic surveillance of the SARS-CoV-2 pandemic is crucial and mainly achieved by amplicon sequencing protocols. Overlapping tiled-amplicons are generated to establish contiguous SARS-CoV-2 genome sequences, which enable the precise resolution of infection chains and outbreaks. We investigated a SARS-CoV-2 outbreak in a local hospital and used nanopore sequencing with a modified ARTIC protocol employing 1200 bp long amplicons. We detected a long deletion of 168 nucleotides in the ORF8 gene in 76 samples from the hospital outbreak. This deletion is difficult to identify with the classical amplicon sequencing procedures since it removes two amplicon primer-binding sites. We analyzed public SARS-CoV-2 sequences and sequencing read data from ENA and identified the same deletion in over 100 genomes belonging to different lineages of SARS-CoV-2, pointing to a mutation hotspot or to positive selection. In almost all cases, the deletion was not represented in the virus genome sequence after consensus building. Additionally, further database searches point to other deletions in the ORF8 coding region that have never been reported by the standard data analysis pipelines. These findings and the fact that ORF8 is especially prone to deletions, make a clear case for the urgent necessity of public availability of the raw data for this and other large deletions that might change the physiology of the virus towards endemism.


Subject(s)
COVID-19/virology , Genes, Viral , SARS-CoV-2/genetics , Sequence Deletion , Genetic Variation , Humans , Nanopore Sequencing , Open Reading Frames , Sequence Analysis, RNA , Whole Genome Sequencing
18.
Microbiol Spectr ; 9(2): e0019721, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1381169

ABSTRACT

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic variants that may alter viral fitness highlights the urgency of widespread next-generation sequencing (NGS) surveillance. To profile genetic variants of the entire SARS-CoV-2 genome, we developed and clinically validated a hybridization capture SARS-CoV-2 NGS assay, integrating novel methods for panel design using double-stranded DNA (dsDNA) biotin-labeled probes, and built accompanying software. This test is the first hybrid capture-based NGS assay given Food and Drug Administration (FDA) emergency use authorization for detection of the SARS-CoV-2 virus. The positive and negative percent agreement (PPA and NPA, respectively) were defined in comparison to the results for an orthogonal real-time reverse transcription polymerase chain reaction (RT-PCR) assay (PPA and NPA, 96.7 and 100%, respectively). The limit of detection was established to be 800 copies/ml with an average fold enrichment of 46,791. Furthermore, utilizing the research-use-only analysis to profile the variants, we identified 55 novel mutations, including 11 in the functionally important spike protein. Finally, we profiled the full nasopharyngeal microbiome using metagenomics and found overrepresentation of 7 taxa and evidence of macrolide resistance in SARS-CoV-2-positive patients. This hybrid capture NGS assay, coupled with optimized software, is a powerful approach to detect and comprehensively map SARS-CoV-2 genetic variants for tracking viral evolution and guiding vaccine updates. IMPORTANCE This is the first FDA emergency-use-authorized hybridization capture-based next-generation sequencing (NGS) assay to detect the SARS-CoV-2 genome. Viral metagenomics and the novel hybrid capture NGS-based assay, along with its research-use-only analysis, can provide important genetic insights into SARS-CoV-2 and other emerging pathogens and improve surveillance and early detection, potentially preventing or mitigating new outbreaks. Better understanding of the continuously evolving SARS-CoV-2 viral genome and the impact of genetic variants may provide individual risk stratification, precision therapeutic options, improved molecular diagnostics, and population-based therapeutic solutions.


Subject(s)
Genetic Variation/genetics , Genome, Viral/genetics , Microbiota/genetics , Nasopharynx/microbiology , SARS-CoV-2/genetics , Anti-Bacterial Agents/pharmacology , COVID-19/pathology , Drug Resistance, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Humans , Limit of Detection , Macrolides/pharmacology , Metagenomics/methods , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification
19.
Genome Biol Evol ; 13(5)2021 05 07.
Article in English | MEDLINE | ID: covidwho-1199488

ABSTRACT

The COVID-19 pandemic has seen an unprecedented response from the sequencing community. Leveraging the sequence data from more than 140,000 SARS-CoV-2 genomes, we study mutation rates and selective pressures affecting the virus. Understanding the processes and effects of mutation and selection has profound implications for the study of viral evolution, for vaccine design, and for the tracking of viral spread. We highlight and address some common genome sequence analysis pitfalls that can lead to inaccurate inference of mutation rates and selection, such as ignoring skews in the genetic code, not accounting for recurrent mutations, and assuming evolutionary equilibrium. We find that two particular mutation rates, G →U and C →U, are similarly elevated and considerably higher than all other mutation rates, causing the majority of mutations in the SARS-CoV-2 genome, and are possibly the result of APOBEC and ROS activity. These mutations also tend to occur many times at the same genome positions along the global SARS-CoV-2 phylogeny (i.e., they are very homoplasic). We observe an effect of genomic context on mutation rates, but the effect of the context is overall limited. Although previous studies have suggested selection acting to decrease U content at synonymous sites, we bring forward evidence suggesting the opposite.


Subject(s)
Mutation Rate , SARS-CoV-2/genetics , Selection, Genetic , Silent Mutation/genetics , COVID-19/virology , Evolution, Molecular , Genome, Viral , Phylogeny , RNA, Viral/genetics , SARS-CoV-2/classification , Sequence Analysis, RNA
20.
Clin Microbiol Infect ; 27(1): 130.e5-130.e8, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-996792

ABSTRACT

OBJECTIVES: Investigation whether in depth characterization of virus variant patterns can be used for epidemiological analysis of the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection clusters in Hamburg, Germany. METHODS: Metagenomic RNA-sequencing and amplicon-sequencing and subsequent variant calling in 25 respiratory samples from SARS-CoV-2 infected patients involved in the earliest infection clusters in Hamburg. RESULTS: Amplikon sequencing and cluster analyses of these SARS-CoV-2 sequences allowed the identification of the first infection cluster and five non-related infection clusters occurring at the beginning of the viral entry of SARS-CoV-2 in the Hamburg metropolitan region. Viral genomics together with epidemiological analyses revealed that the index patient acquired the infection in northern Italy and transmitted it to two out of 134 contacts. Single nucleotide polymorphisms clearly distinguished the virus variants of the index and other clusters and allowed us to track in which sequences worldwide these mutations were first described. Minor variant analyses identified the transmission of intra-host variants in the index cluster and household clusters. CONCLUSIONS: SARS-CoV-2 variant tracing allows the identification of infection clusters and the follow up of infection chains occurring in the population. Furthermore, the follow up of minor viral variants in infection clusters can provide further resolution on transmission events indistinguishable at a consensus sequence level.


Subject(s)
COVID-19 Vaccines/genetics , COVID-19/epidemiology , COVID-19/transmission , Genome, Viral , Pandemics/prevention & control , SARS-CoV-2/genetics , Adult , COVID-19/virology , COVID-19 Vaccines/biosynthesis , COVID-19 Vaccines/immunology , Contact Tracing/statistics & numerical data , Evolution, Molecular , Female , Germany/epidemiology , High-Throughput Nucleotide Sequencing , Humans , Italy/epidemiology , Male , Multigene Family , Phylogeny , Polymorphism, Single Nucleotide , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Travel
SELECTION OF CITATIONS
SEARCH DETAIL